TUT9.TXT

                   ╒═══════════════════════════════╕
                   │         W E L C O M E         │
                   │  To the VGA Trainer Program   │ │
                   │              By               │ │
                   │      DENTHOR of ASPHYXIA      │ │ │
                   ╘═══════════════════════════════╛ │ │
                     ────────────────────────────────┘ │
                       ────────────────────────────────┘

                           --==[ PART 9 ]==--



=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
■ Introduction

Hi there! ASPHYXIA is BACK with our first MegaDemo, Psycho Neurosis! A
paltry 1.3MB download is all it takes to see the group from Durbs first
major production! We are quite proud of it, and think you should see it
;)

Secondly, I released a small little trainer (a trainerette ;-)) on
RsaPROG and Connexctix BBS mail, also on the ASPHYXIA BBS as COPPERS.ZIP
It is a small Pascal program demonstrating how to display copper bars in
text mode. Also includes a check for horizontal retrace (A lot of people
wanted it, that is why I wrote the program) (ASPHYXIA ... first with the
trainer goodies ;-)  aargh, sorry, had to be done ))

Thirdly, sorry about the problems with Tut 8! If you had all the
checking on, the tutorial would probably die on the first points. The
reason is this : in the first loop, we have DrawPoints then
RotatePoints. The variables used in DrawPoints are set in RotatePoints,
so if you put RotatePoints before DrawPoints, the program should work
fine. Alternatively, turn off error checking 8-)

Fourthly, I have had a surprisingly large number of people saying that
"I get this, like, strange '286 instructions not enabled' message!
What's wrong with your code, dude?"  To all of you, get into Pascal, hit
Alt-O (for options), hit enter and a 2 (for Enable 286 instructions). Hard
hey? Doesn't anyone EVER set up their version of Pascal?

Now, on to todays tutorial! 3D solids. That is what the people wanted,
that is what the people get! This tutorial is mainly on how to draw the
polygon on screen. For details on how the 3D stuff works, check out tut
8.



If you would like to contact me, or the team, there are many ways you
can do it : 1) Write a message to Grant Smith/Denthor/Asphyxia in private mail
                  on the ASPHYXIA BBS.
            2) Write to Denthor, EzE or Goth on Connectix.
            3) Write to :  Grant Smith
                           P.O.Box 270 Kloof
                           3640
                           Natal
            4) Call me (Grant Smith) at (031) 73 2129 (leave a message if you
                  call during varsity)
            5) Write to mcphail@beastie.cs.und.ac.za on InterNet, and
                  mention the word Denthor near the top of the letter.

NB : If you are a representative of a company or BBS, and want ASPHYXIA
       to do you a demo, leave mail to me; we can discuss it.
NNB : If you have done/attempted a demo, SEND IT TO ME! We are feeling
        quite lonely and want to meet/help out/exchange code with other demo
        groups. What do you have to lose? Leave a message here and we can work
        out how to transfer it. We really want to hear from you!



=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
■ How to draw a polygon

Sounds easy enough, right? WRONG! There are many, many different ways to
go about this, and today I'll only be showing you one. Please don't take
what is written here as anything approaching the best method, it is just
here to get you on your way...

The procedure I will be using here is based on something most of us
learned in standard eight ... I think. I seem to recall doing something
like this in Mrs. Reids maths class all those years ago ;)

Take two points, x1,y1 and x2,y2. Draw them :

                  + (x1,y1)
                   \
                     \  <-- Point a somewhere along the line
                       \
                         + (x2,y2)

Right, so what we have to do is this : if we know the y-coord of a, what
is it's x-coord? To prove the method we will give the points random
values.

                 + (2,10)
                  \
                    \  <-- a.y = 12
                      \
                        +  (15,30)

Right. Simple enough problem. This is how we do it :
   (a.y-y1) = (12 - 10)  {to get a.y as though y1 was zero}
   *(x2-x1) = *(15 - 2)  {the total x-length of the line}
   /(y2-y1) = /(30 - 10) {the total y-length of the line}
        +x1 = +2         { to get the equation back to real coords}

So our equation is :  (a.y-y1)*(x2-x1)/(y2-y1)+x4    or
                      (12-10)*(15-2)/(30-10)+2
      which gives you :
                      2*13/20+2 = 26/20+2
                                = 3.3

That means that along the line with y=12, x is equal to 3.3. Since we
are not concerned with the decimal place, we replace the  /  with a div,
which in Pascal gives us an integer result, and is faster too. All well
and good, I hear you cry, but what does this have to do with life and
how it relates to polygons in general. The answer is simple. For each of
the four sides of the polygon we do the above test for each y line. We
store the smallest and the largest x values into separate variables for
each line, and draw a horizontal line between them. Ta-Dah! We have a
cool polygon!

For example : Two lines going down :
    
                +             +
               / <-x1     x2->|   <--For this y line
             /                |
           +                  +

Find x1 and x2 for that y, then draw a line between them. Repeat for all
y values.

Of course, it's not as simple as that. We have to make sure we only
check those y lines that contain the polygon (a simple min y, max y test
for all the points). We also have to check that the line we are
calculating actually extends as far as where our current y is (check
that the point is between both y's). We have to compare each x to see
weather it is smaller then the minimum x value so far, or bigger then
the maximum (the original x min is set as a high number, and the x max
is set as a small number). We must also check that we only draw to the
place that we can see ( 0-319 on the x ; 0-199 on the y (the size of the
MCGA screen))

To see how this looks in practice, have a look at the sample code
provided. (Mrs. Reid would probably kill me for the above explanation,
so when you learn it in school, split it up into thousands of smaller
equations to get the same answer ;))

Okay, that's it! What's that? How do you draw a vertical line? Thats
simple ...

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
■ Drawing a vertical line

Right, this is a lot easier than drawing a normal line (Tut 5 .. I
think), because you stay on the same y value. So, what you do is you set
ES to the screen you want to write to, and get DI to the start of the
y-line (see earlier trainers for a description of how SEGMENT:OFFSET
works.

IN   : x1 , x2, y, color, where

           asm
             mov    ax,where
             mov    es,ax
             mov    di,y
             mov    ax,y
             shl    di,8   { di:=di*256 }
             shl    ax,6   { ax:=ax*64 }
             add    di,ax  { di := (y*256)+(y*64) := y*320 Faster then a
                             straight multiplication }

Right, now you add the first x value to get your startoff.
             add    di,x1
Move the color to store into ah and al
             mov    al,color
             mov    ah,al       { ah:=al:=color }
then get CX equal to how many pixels across you want to go
             mov    cx,x2
             sub    cx,x1   { cx:=x2-x1 }
Okay, as we all know, moving a word is a lot faster then moving a byte,
so we halve CX
             shr    cx,1    { cx:=cx/2 }
but what happens if CX was an odd number. After a shift, the value of
the last number is placed in the carry flag, so what we do is jump over
a single byte move if the carry flag is zero, or execute it if it is
one.
            jnc     @Start  { If there is no carry, jump to label Start }
            stosb           { ES:[DI]:=al ; increment DI }
        @Start :            { Label Start }
            rep     stosw   { ES:[DI]:=ax ; DI:=DI+2; repeat CX times }

Right, the finished product looks like this :

Procedure Hline (x1,x2,y:word;col:byte;where:word); assembler;
  { This draws a horizontal line from x1 to x2 on line y in color col }
asm
  mov   ax,where
  mov   es,ax
  mov   ax,y
  mov   di,ax
  shl   ax,8
  shl   di,6
  add   di,ax
  add   di,x1

  mov   al,col
  mov   ah,al
  mov   cx,x2
  sub   cx,x1
  shr   cx,1
  jnc   @start
  stosb
@Start :
  rep   stosw
end;

Done!

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
■  In closing

This 3D system is still not perfect. It needs to be faster, and now I
have also dumped the problem of face-sorting on you! Nyahahahaha!

           [ My sister and I were driving along the other day when she
               asked me, what would I like for my computer.
             I thought long and hard about it, and came up with the
               following hypothesis. When a girl gets a Barbie doll, she
               then wants the extra ballgown for the doll, then the
               hairbrush, and the car, and the house, and the friends
               etc.
             When a guy gets a computer, he wants the extra memory, the
               bigger hard drive, the maths co-pro, the better
               motherboard, the latest software, and the bigger monitor
               etc.
             I told my sister all of this, and finished up with : "So as
               you can see, computers are Barbie dolls for MEN!"
             She called me a chauvinist. And hit me. Hard.
                                                                   ]
                                                       - Grant Smith
                                                           19:24
                                                             26/2/94

See you next time!
  - Denthor

These fine BBS's carry the ASPHYXIA DEMO TRAINER SERIES : (alphabetical)

╔══════════════════════════╦════════════════╦═════╦═══╦════╦════╗
║BBS Name                  ║Telephone No.   ║Open ║Msg║File║Past║
╠══════════════════════════╬════════════════╬═════╬═══╬════╬════╣
║ASPHYXIA BBS #1           ║(031) 765-5312  ║ALL  ║ * ║ *  ║ *  ║
║ASPHYXIA BBS #2           ║(031) 765-6293  ║ALL  ║ * ║ *  ║ *  ║
║Connectix BBS             ║(031) 266-9992  ║ALL  ║   ║ *  ║ *  ║
╚══════════════════════════╩════════════════╩═════╩═══╩════╩════╝

Open = Open at all times or only A/H
Msg  = Available in message base
File = Available in file base
Past = Previous Parts available

Does no other BBS's ANYWHERE carry the trainer? Am I writing this for
three people who get it from one of these BBS's each week? Should I go
on? (Hehehehe ... I was pleased to note that Tut 8 was THE most
downloaded file from ASPHYXIA BBS last month ... )       


┌──────────────┬─────────────────────────────────────────────────────────────
│ TUTPROG9.PAS │
└──────────────┘

{$X+}
USES Crt;

CONST VGA = $A000;
      maxpolys = 5;
      A : Array [1..maxpolys,1..4,1..3] of integer =
        (
         ((-10,10,0),(-2,-10,0),(0,-10,0),(-5,10,0)),
         ((10,10,0),(2,-10,0),(0,-10,0),(5,10,0)),
         ((-2,-10,0),(2,-10,0),(2,-5,0),(-2,-5,0)),
         ((-6,0,0),(6,0,0),(7,5,0),(-7,5,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0))
        );  { The 3-D coordinates of our object ... stored as (X1,Y1,Z1), }
            { (X2,Y2,Z2) ... for the 4 points of a poly }
     S : Array [1..maxpolys,1..4,1..3] of integer =
        (
         ((-10,-10,0),(10,-10,0),(10,-7,0),(-10,-7,0)),
         ((-10,10,0),(10,10,0),(10,7,0),(-10,7,0)),
         ((-10,1,0),(10,1,0),(10,-2,0),(-10,-2,0)),
         ((-10,-8,0),(-7,-8,0),(-7,0,0),(-10,0,0)),
         ((10,8,0),(7,8,0),(7,0,0),(10,0,0))
        );  { The 3-D coordinates of our object ... stored as (X1,Y1,Z1), }
            { (X2,Y2,Z2) ... for the 4 points of a poly }
     P : Array [1..maxpolys,1..4,1..3] of integer =
        (
         ((-10,-10,0),(-7,-10,0),(-7,10,0),(-10,10,0)),
         ((10,-10,0),(7,-10,0),(7,0,0),(10,0,0)),
         ((-9,-10,0),(9,-10,0),(9,-7,0),(-9,-7,0)),
         ((-9,-1,0),(9,-1,0),(9,2,0),(-9,2,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0))
        );  { The 3-D coordinates of our object ... stored as (X1,Y1,Z1), }
            { (X2,Y2,Z2) ... for the 4 points of a poly }
     H : Array [1..maxpolys,1..4,1..3] of integer =
        (
         ((-10,-10,0),(-7,-10,0),(-7,10,0),(-10,10,0)),
         ((10,-10,0),(7,-10,0),(7,10,0),(10,10,0)),
         ((-9,-1,0),(9,-1,0),(9,2,0),(-9,2,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0))
        );  { The 3-D coordinates of our object ... stored as (X1,Y1,Z1), }
            { (X2,Y2,Z2) ... for the 4 points of a poly }
     Y : Array [1..maxpolys,1..4,1..3] of integer =
        (
         ((-7,-10,0),(0,-3,0),(0,0,0),(-10,-7,0)),
         ((7,-10,0),(0,-3,0),(0,0,0),(10,-7,0)),
         ((-2,-3,0),(2,-3,0),(2,10,0),(-2,10,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0))
        );  { The 3-D coordinates of our object ... stored as (X1,Y1,Z1), }
            { (X2,Y2,Z2) ... for the 4 points of a poly }
     X : Array [1..maxpolys,1..4,1..3] of integer =
        (
         ((-7,-10,0),(10,7,0),(7,10,0),(-10,-7,0)),
         ((7,-10,0),(-10,7,0),(-7,10,0),(10,-7,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0))
        );  { The 3-D coordinates of our object ... stored as (X1,Y1,Z1), }
            { (X2,Y2,Z2) ... for the 4 points of a poly }
     I : Array [1..maxpolys,1..4,1..3] of integer =
        (
         ((-10,-10,0),(10,-10,0),(10,-7,0),(-10,-7,0)),
         ((-10,10,0),(10,10,0),(10,7,0),(-10,7,0)),
         ((-2,-9,0),(2,-9,0),(2,9,0),(-2,9,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0)),
         ((0,0,0),(0,0,0),(0,0,0),(0,0,0))
        );  { The 3-D coordinates of our object ... stored as (X1,Y1,Z1), }
            { (X2,Y2,Z2) ... for the 4 points of a poly }


Type Point = Record
               x,y,z:real;                { The data on every point we rotate}
             END;
     Virtual = Array [1..64000] of byte;  { The size of our Virtual Screen }
     VirtPtr = ^Virtual;                  { Pointer to the virtual screen }


VAR Lines : Array [1..maxpolys,1..4] of Point;  { The base object rotated }
    Translated : Array [1..maxpolys,1..4] of Point; { The rotated object }
    Xoff,Yoff,Zoff:Integer;               { Used for movement of the object }
    lookup : Array [0..360,1..2] of real; { Our sin and cos lookup table }
    Virscr : VirtPtr;                     { Our first Virtual screen }
    Vaddr  : word;                        { The segment of our virtual screen}


{──────────────────────────────────────────────────────────────────────────}
Procedure SetMCGA;  { This procedure gets you into 320x200x256 mode. }
BEGIN
  asm
     mov        ax,0013h
     int        10h
  end;
END;


{──────────────────────────────────────────────────────────────────────────}
Procedure SetText;  { This procedure returns you to text mode.  }
BEGIN
  asm
     mov        ax,0003h
     int        10h
  end;
END;

{──────────────────────────────────────────────────────────────────────────}
Procedure Cls (Where:word;Col : Byte);
   { This clears the screen to the specified color }
BEGIN
     asm
        push    es
        mov     cx, 32000;
        mov     es,[where]
        xor     di,di
        mov     al,[col]
        mov     ah,al
        rep     stosw
        pop     es
     End;
END;

{──────────────────────────────────────────────────────────────────────────}
Procedure SetUpVirtual;
   { This sets up the memory needed for the virtual screen }
BEGIN
  GetMem (VirScr,64000);
  vaddr := seg (virscr^);
END;


{──────────────────────────────────────────────────────────────────────────}
Procedure ShutDown;
   { This frees the memory used by the virtual screen }
BEGIN
  FreeMem (VirScr,64000);
END;


{──────────────────────────────────────────────────────────────────────────}
procedure flip(source,dest:Word);
  { This copies the entire screen at "source" to destination }
begin
  asm
    push    ds
    mov     ax, [Dest]
    mov     es, ax
    mov     ax, [Source]
    mov     ds, ax
    xor     si, si
    xor     di, di
    mov     cx, 32000
    rep     movsw
    pop     ds
  end;
end;


{──────────────────────────────────────────────────────────────────────────}
Procedure Pal(Col,R,G,B : Byte);
  { This sets the Red, Green and Blue values of a certain color }
Begin
   asm
      mov    dx,3c8h
      mov    al,[col]
      out    dx,al
      inc    dx
      mov    al,[r]
      out    dx,al
      mov    al,[g]
      out    dx,al
      mov    al,[b]
      out    dx,al
   end;
End;


{──────────────────────────────────────────────────────────────────────────}
Procedure Hline (x1,x2,y:word;col:byte;where:word); assembler;
  { This draws a horizontal line from x1 to x2 on line y in color col }
asm
  mov   ax,where
  mov   es,ax
  mov   ax,y
  mov   di,ax
  shl   ax,8
  shl   di,6
  add   di,ax
  add   di,x1

  mov   al,col
  mov   ah,al
  mov   cx,x2
  sub   cx,x1
  shr   cx,1
  jnc   @start
  stosb
@Start :
  rep   stosw
end;


{──────────────────────────────────────────────────────────────────────────}
Procedure DrawPoly(x1,y1,x2,y2,x3,y3,x4,y4:integer;color:byte;where:word);
  { This draw a polygon with 4 points at x1,y1 , x2,y2 , x3,y3 , x4,y4
    in color col }
var
  x:integer;
  mny,mxy:integer;
  mnx,mxx,yc:integer;
  mul1,div1,
  mul2,div2,
  mul3,div3,
  mul4,div4:integer;

begin
  mny:=y1; mxy:=y1;
  if y2mxy then mxy:=y2;
  if y3mxy then mxy:=y3;    { Choose the min y mny and max y mxy }
  if y4mxy then mxy:=y4;

  if mny<0 then mny:=0;
  if mxy>199 then mxy:=199;
  if mny>199 then exit;
  if mxy<0 then exit;        { Verticle range checking }

  mul1:=x1-x4; div1:=y1-y4;
  mul2:=x2-x1; div2:=y2-y1;
  mul3:=x3-x2; div3:=y3-y2;
  mul4:=x4-x3; div4:=y4-y3;  { Constansts needed for intersection calc }

  for yc:=mny to mxy do
    begin
      mnx:=320;
      mxx:=-1;
      if (y4>=yc) or (y1>=yc) then
        if (y4<=yc) or (y1<=yc) then   { Check that yc is between y1 and y4 }
          if not(y4=y1) then
            begin
              x:=(yc-y4)*mul1 div div1+x4; { Point of intersection on x axis }
              if xmxx then
                mxx:=x;       { Set point as start or end of horiz line }
            end;
      if (y1>=yc) or (y2>=yc) then
        if (y1<=yc) or (y2<=yc) then   { Check that yc is between y1 and y2 }
          if not(y1=y2) then
            begin
              x:=(yc-y1)*mul2 div div2+x1; { Point of intersection on x axis }
              if xmxx then
                mxx:=x;       { Set point as start or end of horiz line }
            end;
      if (y2>=yc) or (y3>=yc) then
        if (y2<=yc) or (y3<=yc) then   { Check that yc is between y2 and y3 }
          if not(y2=y3) then
            begin
              x:=(yc-y2)*mul3 div div3+x2; { Point of intersection on x axis }
              if xmxx then
                mxx:=x;       { Set point as start or end of horiz line }
            end;
      if (y3>=yc) or (y4>=yc) then
        if (y3<=yc) or (y4<=yc) then   { Check that yc is between y3 and y4 }
          if not(y3=y4) then
            begin
              x:=(yc-y3)*mul4 div div4+x3; { Point of intersection on x axis }
              if xmxx then
                mxx:=x;       { Set point as start or end of horiz line }
            end;
      if mnx<0 then
        mnx:=0;
      if mxx>319 then
        mxx:=319;          { Range checking on horizontal line }
      if mnx<=mxx then
        hline (mnx,mxx,yc,color,where);   { Draw the horizontal line }
    end;
  end;



{──────────────────────────────────────────────────────────────────────────}
Function rad (theta : real) : real;
  {  This calculates the degrees of an angle }
BEGIN
  rad := theta * pi / 180
END;


{──────────────────────────────────────────────────────────────────────────}
Procedure SetUpPoints;
  { This creates the lookup table }
VAR loop1,loop2:integer;
BEGIN
  For loop1:=0 to 360 do BEGIN
    lookup [loop1,1]:=sin (rad (loop1));
    lookup [loop1,2]:=cos (rad (loop1));
  END;
END;


{──────────────────────────────────────────────────────────────────────────}
Procedure Putpixel (X,Y : Integer; Col : Byte; where:word);
  { This puts a pixel on the screen by writing directly to memory. }
BEGIN
  Asm
    mov     ax,[where]
    mov     es,ax
    mov     bx,[X]
    mov     dx,[Y]
    mov     di,bx
    mov     bx, dx                  {; bx = dx}
    shl     dx, 8
    shl     bx, 6
    add     dx, bx                  {; dx = dx + bx (ie y*320)}
    add     di, dx                  {; finalise location}
    mov     al, [Col]
    stosb
  End;
END;



{──────────────────────────────────────────────────────────────────────────}
Procedure RotatePoints (X,Y,Z:Integer);
  { This rotates object lines by X,Y and Z; then places the result in
    TRANSLATED }
VAR loop1,loop2:integer;
    temp:point;
BEGIN
  For loop1:=1 to maxpolys do BEGIN
    For loop2:=1 to 4 do BEGIN
      temp.x:=lines[loop1,loop2].x;
      temp.y:=lookup[x,2]*lines[loop1,loop2].y - lookup[x,1]*lines[loop1,loop2].z;
      temp.z:=lookup[x,1]*lines[loop1,loop2].y + lookup[x,2]*lines[loop1,loop2].z;

      translated[loop1,loop2]:=temp;

      If y>0 then BEGIN
        temp.x:=lookup[y,2]*translated[loop1,loop2].x - lookup[y,1]*translated[loop1,loop2].y;
        temp.y:=lookup[y,1]*translated[loop1,loop2].x + lookup[y,2]*translated[loop1,loop2].y;
        temp.z:=translated[loop1,loop2].z;
        translated[loop1,loop2]:=temp;
      END;

      If z>0 then BEGIN
        temp.x:=lookup[z,2]*translated[loop1,loop2].x + lookup[z,1]*translated[loop1,loop2].z;
        temp.y:=translated[loop1,loop2].y;
        temp.z:=-lookup[z,1]*translated[loop1,loop2].x + lookup[z,2]*translated[loop1,loop2].z;
        translated[loop1,loop2]:=temp;
      END;
    END;
  END;
END;



{──────────────────────────────────────────────────────────────────────────}
Procedure DrawPoints;
  { This draws the translated object to the virtual screen }
VAR loop1:Integer;
    nx,ny,nx2,ny2,nx3,ny3,nx4,ny4:integer;
    temp:integer;
BEGIN
  For loop1:=1 to maxpolys do BEGIN
    If (translated[loop1,1].z+zoff<0) and (translated[loop1,2].z+zoff<0) and
       (translated[loop1,3].z+zoff<0) and (translated[loop1,4].z+zoff<0) then BEGIN
      temp:=round (translated[loop1,1].z+zoff);
      nx :=round (256*translated[loop1,1].X) div temp+xoff;
      ny :=round (256*translated[loop1,1].Y) div temp+yoff;
      temp:=round (translated[loop1,2].z+zoff);
      nx2:=round (256*translated[loop1,2].X) div temp+xoff;
      ny2:=round (256*translated[loop1,2].Y) div temp+yoff;
      temp:=round (translated[loop1,3].z+zoff);
      nx3:=round (256*translated[loop1,3].X) div temp+xoff;
      ny3:=round (256*translated[loop1,3].Y) div temp+yoff;
      temp:=round (translated[loop1,4].z+zoff);
      nx4:=round (256*translated[loop1,4].X) div temp+xoff;
      ny4:=round (256*translated[loop1,4].Y) div temp+yoff;
      drawpoly (nx,ny,nx2,ny2,nx3,ny3,nx4,ny4,13,vaddr);
    END;
  END;
END;



{──────────────────────────────────────────────────────────────────────────}
Procedure MoveAround;
  { This is the main display procedure. Firstly it brings the object towards
    the viewer by increasing the Zoff, then passes control to the user }
VAR deg,loop1,loop2:integer;
    ch:char;

  Procedure Whizz (sub:boolean);
  VAR loop1:integer;
  BEGIN
    For loop1:=-64 to -5 do BEGIN
      zoff:=loop1*8;
      if sub then xoff:=xoff-7 else xoff:=xoff+7;
      RotatePoints (deg,deg,deg);
      DrawPoints;
      flip (vaddr,vga);
      Cls (vaddr,0);
      deg:=(deg+5) mod 360;
    END;
  END;

BEGIN
  deg:=0;
  ch:=#0;
  Yoff:=100;
  Xoff:=350;
  Cls (vaddr,0);
  For loop1:=1 to maxpolys do
    For loop2:=1 to 4 do BEGIN
      Lines [loop1,loop2].x:=a [loop1,loop2,1];
      Lines [loop1,loop2].y:=a [loop1,loop2,2];
      Lines [loop1,loop2].z:=a [loop1,loop2,3];
    END;
  Whizz (TRUE);

  For loop1:=1 to maxpolys do
    For loop2:=1 to 4 do BEGIN
      Lines [loop1,loop2].x:=s [loop1,loop2,1];
      Lines [loop1,loop2].y:=s [loop1,loop2,2];
      Lines [loop1,loop2].z:=s [loop1,loop2,3];
    END;
  Whizz (FALSE);

  For loop1:=1 to maxpolys do
    For loop2:=1 to 4 do BEGIN
      Lines [loop1,loop2].x:=p [loop1,loop2,1];
      Lines [loop1,loop2].y:=p [loop1,loop2,2];
      Lines [loop1,loop2].z:=p [loop1,loop2,3];
    END;
  Whizz (TRUE);

  For loop1:=1 to maxpolys do
    For loop2:=1 to 4 do BEGIN
      Lines [loop1,loop2].x:=h [loop1,loop2,1];
      Lines [loop1,loop2].y:=h [loop1,loop2,2];
      Lines [loop1,loop2].z:=h [loop1,loop2,3];
    END;
  Whizz (FALSE);

  For loop1:=1 to maxpolys do
    For loop2:=1 to 4 do BEGIN
      Lines [loop1,loop2].x:=y [loop1,loop2,1];
      Lines [loop1,loop2].y:=y [loop1,loop2,2];
      Lines [loop1,loop2].z:=y [loop1,loop2,3];
    END;
  Whizz (TRUE);

  For loop1:=1 to maxpolys do
    For loop2:=1 to 4 do BEGIN
      Lines [loop1,loop2].x:=x [loop1,loop2,1];
      Lines [loop1,loop2].y:=x [loop1,loop2,2];
      Lines [loop1,loop2].z:=x [loop1,loop2,3];
    END;
  Whizz (FALSE);

  For loop1:=1 to maxpolys do
    For loop2:=1 to 4 do BEGIN
      Lines [loop1,loop2].x:=i [loop1,loop2,1];
      Lines [loop1,loop2].y:=i [loop1,loop2,2];
      Lines [loop1,loop2].z:=i [loop1,loop2,3];
    END;
  Whizz (TRUE);

  For loop1:=1 to maxpolys do
    For loop2:=1 to 4 do BEGIN
      Lines [loop1,loop2].x:=a [loop1,loop2,1];
      Lines [loop1,loop2].y:=a [loop1,loop2,2];
      Lines [loop1,loop2].z:=a [loop1,loop2,3];
    END;
  Whizz (FALSE);

  cls (vaddr,0);
  cls (vga,0);
  Xoff := 160;

  Repeat
    if keypressed then BEGIN
      ch:=upcase (Readkey);
      Case ch of 'A' : zoff:=zoff+5;
                 'Z' : zoff:=zoff-5;
                 ',' : xoff:=xoff-5;
                 '.' : xoff:=xoff+5;
                 'S' : yoff:=yoff-5;
                 'X' : yoff:=yoff+5;
      END;
    END;
    DrawPoints;
    flip (vaddr,vga);
    cls (vaddr,0);
    RotatePoints (deg,deg,deg);
    deg:=(deg+5) mod 360;
  Until ch=#27;
END;


BEGIN
  SetUpVirtual;
  clrscr;
  Writeln ('Hello there! Varsity has begun once again, so it is once again');
  Writeln ('back to the grindstone ;-) ... anyway, this tutorial is, by');
  Writeln ('popular demand, on poly-filling, in relation to 3-D solids.');
  Writeln;
  Writeln ('In this program, the letters of ASPHYXIA will fly past you. As you');
  Writeln ('will see, they are solid, not wireframe. After the last letter has');
  Writeln ('flown by, a large A will be left in the middle of the screen.');
  Writeln;
  Writeln ('You will be able to move it around the screen, and you will notice');
  Writeln ('that it may have bits only half on the screen, i.e. clipping is');
  Writeln ('perfomed. To control it use the following : "A" and "Z" control the Z');
  Writeln ('movement, "," and "." control the X movement, and "S" and "X"');
  Writeln ('control the Y movement. I have not included rotation control, but');
  Writeln ('it should be easy enough to put in yourself ... if you have any');
  Writeln ('hassles, leave me mail.');
  Writeln;
  Writeln ('I hope this is what you wanted...leave me mail for new ideas.');
  writeln;
  writeln;
  Write ('  Hit any key to contine ...');
  Readkey;
  SetMCGA;
  SetUpPoints;
  MoveAround;
  SetText;
  ShutDown;
  Writeln ('All done. This concludes the ninth sample program in the ASPHYXIA');
  Writeln ('Training series. You may reach DENTHOR under the names of GRANT');
  Writeln ('SMITH/DENTHOR/ASPHYXIA on the ASPHYXIA BBS. I am also an avid');
  Writeln ('Connectix BBS user, and occasionally read RSAProg.');
  Writeln ('The numbers are available in the main text. You may also write to me at:');
  Writeln ('             Grant Smith');
  Writeln ('             P.O. Box 270');
  Writeln ('             Kloof');
  Writeln ('             3640');
  Writeln ('I hope to hear from you soon!');
  Writeln; Writeln;
  Write   ('Hit any key to exit ...');
  Readkey;
END.